D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 13	HS 2021

13.1. Harmonic function in the disk

Let $D := \{x^2 + y^2 < 1\}$. Find the solution to the following problem

$$\begin{cases} \Delta u = 0, & \text{for } (x, y) \in D, \\ u(x, y) = x^3 + x, & \text{for } (x, y) \in \partial D. \end{cases}$$

Hint: It holds $\cos(\theta)^3 = \frac{1}{4}(3\cos(\theta) + \cos(3\theta)).$

13.2. Harmonic function in the annulus

Find the solution to the following problem, posed for 2 < r < 4 and $-\pi < \theta \le \pi$:

$$\begin{cases} \Delta u = 0, & \text{for } 2 < r < 4, \\ u(2,\theta) = 0, & \text{for } -\pi < \theta \le \pi, \\ u(4,\theta) = \sin(\theta), & \text{for } -\pi < \theta \le \pi. \end{cases}$$

13.3. Big on the boundary, small inside

Let $B_r := \{x^2 + y^2 < r\}$ be the ball centered at the origin with radius r > 0. Find a harmonic function $u : \overline{B}_1 \to \mathbb{R}$ such that

$$|u| < 0.00001$$
 in $B_{\frac{1}{2}}$ and $\int_{\partial B_1} |u| > 1000$.