13.1. Harmonic function in the disk

Let $D:=\left\{x^{2}+y^{2}<1\right\}$. Find the solution to the following problem

$$
\left\{\begin{aligned}
\Delta u & =0, & & \text { for }(x, y) \in D \\
u(x, y) & =x^{3}+x, & & \text { for }(x, y) \in \partial D
\end{aligned}\right.
$$

Hint: It holds $\cos (\theta)^{3}=\frac{1}{4}(3 \cos (\theta)+\cos (3 \theta))$.

13.2. Harmonic function in the annulus

Find the solution to the following problem, posed for $2<r<4$ and $-\pi<\theta \leq \pi$:

$$
\left\{\begin{aligned}
\Delta u & =0, & & \text { for } 2<r<4, \\
u(2, \theta) & =0, & & \text { for }-\pi<\theta \leq \pi \\
u(4, \theta) & =\sin (\theta), & & \text { for }-\pi<\theta \leq \pi
\end{aligned}\right.
$$

13.3. Big on the boundary, small inside

Let $B_{r}:=\left\{x^{2}+y^{2}<r\right\}$ be the ball centered at the origin with radius $r>0$. Find a harmonic function $u: \bar{B}_{1} \rightarrow \mathbb{R}$ such that

$$
|u|<0.00001 \text { in } B_{\frac{1}{2}} \quad \text { and } \quad \int_{\partial B_{1}}|u|>1000 .
$$

